Leer libro Sobre la teoría de la relatividad en formato epub
Albert Einstein (Zurich 1879-Princeton 1955) Presentaba en 1916 Sobre la teoría de la relatividad especial y general con las siguientes palabras: «El presente librito pretende dar una idea lo más exacta posible de la teoría de la relatividad, pensando en aquellas personas que, sin dominar el aparato matemático de la física teórica, tienen interés en la teoría desde el punto de vista científico o filosófico». He aquí pues los fundamentos de la teoría de la relatividad expuestos con la mayor claridad posible por su propio autor.
Sobre la teoria de la relatividad de Albert Einstein
La siposis del libro "Sobre la teoría de la relatividad" en español es:
"En este libro, Albert Einstein presenta su teoría de la relatividad, que revolucionó la física y la astronomía a principios del siglo XX. La teoría se divide en dos partes: la teoría de la relatividad especial, que describe cómo el tiempo y el espacio son relativos, y la teoría de la relatividad general, que describe cómo la gravedad es el resultado de la curvatura del espacio-tiempo.
Einstein explica en detalle los conceptos clave de la teoría, incluyendo la idea de que el tiempo y el espacio no son absolutos, sino que son relativos a la observación.
Seguro que también tú, querido lector, entablaste de niño conocimiento con el soberbio edificio de la Geometría de Euclides y recuerdas, quizá con más respeto que amor, la imponente construcción por cuyas altas escalinatas te pasearon durante horas sin cuento los meticulosos profesores de la asignatura. Y seguro que, en virtud de ese tu pasado, castigarías con el desprecio a cualquiera que declarase falso incluso el más recóndito teoremita de esta ciencia. Pero es muy posible que este sentimiento de orgullosa seguridad te abandonara de inmediato si alguien te preguntara: «¿Qué entiendes tú al afirmar que estos teoremas son verdaderos?». Detengámonos un rato en esta cuestión.
La Geometría parte de ciertos conceptos básicos, como el de plano, punto, recta, a los que estamos en condiciones de asociar representaciones más o menos claras, así como de ciertas proposiciones simples (axiomas) que, sobre la base de aquellas representaciones, nos inclinamos a dar por «verdaderas». Todos los demás teoremas son entonces referidos a aquellos axiomas (es decir, son demostrados) sobre la base de un método lógico cuya justificación nos sentimos obligados a reconocer. Un teorema es correcto, o «verdadero», cuando se deriva de los axiomas a través de ese método reconocido. La cuestión de la «verdad» de los distintos teoremas geométricos remite, pues, a la de la «verdad» de los axiomas. Sin embargo, se sabe desde hace mucho que esta última cuestión no sólo no es resoluble con los métodos de la Geometría, sino que ni siquiera tiene sentido en sí. No se puede preguntar si es verdad o no que por dos puntos sólo pasa
una
recta. Únicamente cabe decir que la Geometría euclídea trata de figuras a las que llama «rectas» y a las cuales asigna la propiedad de quedar unívocamente determinadas por dos de sus puntos. El concepto de «verdadero» no se aplica a las proposiciones de la Geometría pura, porque con la palabra «verdadero» solemos designar siempre, en última instancia, la coincidencia con un objeto «real»; la Geometría, sin embargo, no se ocupa de la relación de sus conceptos con los objetos de la experiencia, sino sólo de la relación lógica que guardan estos conceptos entre sí.